Tag Archives: education

Student success

The call came in at midnight. Medical emergencies often seem to be middle of the night events in life. She’d been transported from the residence hall to the emergency room. Chest pain. Difficulty breathing. Abdominal pain. Lower back pain. Severe pain. Both sides. I knew this was a fourth trip in as many days. Tests were coming back negative or inconclusive. While her condition deteriorated. As if a child of mine were in distress, I was headed out the door.

This time the hospital admitted her and, with one particular test providing a cause, put her on the appropriate medical treatment.

Word was passed along to her instructors that she had been hospitalized and was undergoing treatment. Two faculty members asked about her condition, asked to be kept informed as to how they could help. One of the two asked also whether the student was taking visitors – the faculty member wanted to stop by. Their immediate reaction was for the care and safety of the student. Beyond concern for her immediate condition, they also expressed a desire to help her succeed in their courses when she returns.

The third faculty member said only, “She missed a quiz and test already, she is likely to fail my course.” The faculty member did not ask about her as a person, expressed no concern over the distress the young woman was in. Just stated that she was headed for failure in their class. Cold. That was the only word that came to mind. Cold. No words of comfort. No assurance that the faculty member stood by ready to help the young woman once she had recovered. No commitment to her success as a student. Heck, no sign that the faculty member considered her a human being suffering from pain. No empathy at all.

I suggested as much, that right now her family and those of us who know her are a tad more concerned that she get well and recover than whether or not she took some particular quiz.

A commitment to student success can be an empty slogan. A trite over used cliche. Or one can ignore the chaff that now attends the term student success and, as teachers have done for millennia, show a supportive approach to the individual student as a person. Each student is a bundle of hopes and dreams, some parents’ loved and adored child, someone who, when they are in distress far from home, could use some empathy and care from those entrusted with their education.

I once had the privilege of attending a talk given by Paulo Freire, who was a Brazilian educator and philosopher. Prior to hearing him talk I had tackled some of his writings, but I found difficulty understanding the philosophical underpinnings of his writing. At the talk Paulo was asked, “In a word, what is education?” Paulo paused and then said, “Love. Education is love.” That I could understand.

 

Advertisements

Of learning and loss

Forces driving the financing of education, especially higher education, increasingly want to see that the education delivered prepares the student for the world of the workplace. Measures such as the number of graduates who succeed in obtaining employment in their field of study are used to gauge the success of a program. How often has someone said, “Education is the key to success” with the implicit meaning that the value of an education is what one does with that education beyond graduation.

Loss

 

In a higher education system increasingly driven by the value of education as a path to employment, what is the value of that education to one who will never become employed? One who is tragically lost to us. Rousseau in Emile first introduced me to the idea that an education should be of value to a child even if that child does not reach adulthood. And value for children is in having fun, enjoying life. An education should be fun. Enjoyable. An experience that is sufficiently wonderful that even if the child were to know that they will not live out the fullness of the years, the child would want to be in school. In elementary school. In high school. In college.

An education should be of value to a child in the here and now, an enriching and exciting experience, an adventure filled with wondrous wonders. Perhaps everyday will not be exciting, but net the experience should be positive.

Higher education at present is especially enamored of student learning outcomes and measuring learning. Learning is measured, assessed, analyzed, reported, and used to attempt to improve learning the next term. Few instructors rate whether their class is fun, exciting, interesting, something that the student would recommend to other students.

This is not a call to instructors to become entertainers, but rather a call to make the subject matter the instructor loves as interesting and exciting for the students as the subject is to themselves. And if an instructor does not love the subject they are teaching, then that instructor should not teach that subject, perhaps consider leaving education altogether.

An education should have value for the child, the student, in the here and now, in the present.

Reading books

A quarter century ago I often kept a book around, sometimes lugging the book around and catching a page or two on a city bus or commuter train. Moving to Micronesia meant that I could not wander into a book store, rummage the shelves, and find a book of interest. Occasionally the library would acquire a book of interest to me, or more rarely I would request that a particular text be acquired, but these were rare events.

My taste in books is both eclectic and not best seller. Books on statistics, physics, and running tend to hold my interest – genres that even the largest bookstores would carry in limited selection only. By the turn of the century Amazon had come into existence and provided a potential option. The books I preferred, however, were often hardback, expensive, and shipping to these islands always carries a probability of loss. Not to mention that once here, books decay in the heat and humidity. There is no building up of a personal library in the equatorial tropics.

Back in September 2014 I upgraded from a Nokia Asha feature cell phone to an LG Android smart cell phone. A trip in October caused me to add a Kindle app and a book to read on the long flight, with little thought to use beyond the one journey.

Although the LG is a small screen relative to the size of a book or a monitor, I was pleasantly surprised at the readability. In 1999 Bill Hill wrote at length about the “magic of reading,” bringing together research on ludic reading, Optimized Serial Pattern Recognition (OSPREY), and generating the immersive flow that accompanies reading at length for pleasure. The paper delved into fonts and screen resolution.

In 1980 computer monitor resolutions were too low to support fonts, let alone sustained reading for pleasure. In 1984 the Macintosh introduced screens with resolutions that could support fonts. By the 1990s increasing monitor resolutions suggested that screens would eventually equal the resolution of print products. I recall being in conversations about whether screens could or would replace the printed book. As an over-generalization, older readers felt that screens would never generate the flow and magic of books.

The rise of social media after the turn of the century caused an ever increasing number of people to spend significant time reading via a monitor. By 2015 reading done from a screen around campus clearly dominated reading from a book.

The Kindle book on the LG was a one off experiment for the purpose of a long flight, I did not expect that I would find readability and flow on the small LG screen. Once I discovered that I could enjoy a book on my cell phone, I continued to read after I returned.

The books were not free, but each cost less than a single night of stone sakau. Reading only happens in the interstitial moments between other daily tasks, thus a single book can last me a month. That makes reading a less expensive habit than weekend sakau, a definition of affordability for me.

Books in Kindle
Kindle shelf

Reading on the cell returns the ability to spontaneously grab a page or two of reading here or there. While waiting for a meeting to start, or in a bank line, or while sitting in the car waiting for the shoppers to finish shopping. No need to lug around a book, I have a small library tethered to my hip. I carry my books even when I am running, they do not slow me down.

I was looking at the shelf today and thinking that thought that so many educators have thought before me: doesn’t this change everything? Is this not a change on the scale of the Gutenberg press making possible school text books?

I do not know where technology may take education, I only know that after a quarter century I am reading regularly again. Technology has again changed my habits and my personal quality of life, in this case enriching life on a small rock in the Pacific ocean.

Motor learning

I once wrote about the learning curve for learning to ride a RipStik and my own penchant for teaching whatever skills I have learned. About 18 months ago a five year old learned to ride a RipStik on our porch and then she left for another island. She had not seen a RipStik for 18 months.

Fresh off the airplane she did not seem to remember me nor the times we spent together a year and a half ago.  Upon reaching the house she saw the  RipStik and immediately took to trying to ride it. After a couple failed attempts, she was back up and riding.

18 months cold, the motor memories remain encoded
18 months cold, the motor memories remain encoded

Whatever the mechanism for this long term motor memory, it is rather amazing given that much of the rest of her world of 18 months earlier is for the most part forgotten.

Teacher Corps Assessment

At the end of a week long mathematics and science workshop the 21 participants were asked to respond to the following questions. A report on the workshop exists as two blog articles, Teacher Corps and Teacher Corps II. Responses were obtained from 17 participants.

1. What was the most useful activity for you as a teacher?
2. What was the least useful activity for you as a teacher?
3. What was the most interesting activity?
4. What was the least interesting activity?
5. What was the most surprising experience during this past week?
6. What was the most fun?
7. What would you change if such a workshop was run in the future for teacher corps?

The table below is an excerpt for a larger table of responses. Responses were tallied and common responses were combined. The table includes only those responses which appeared three or more times. Note that respondents were permitted to cite more than one activity per question if they chose to do so.

Response Most useful Least useful Most interesting Least interesting Surprising Fun Sum
Plant names 4 3 2 7 3 19
Field trip 2 3 2 7 14
Floral litmus 1 5 1 2 9
None 7 2 9
All 6 6
Constructions 1 1 2 1 5
El Niño 1 1 2 1 5
Local materials 3 1 4
Speed of sound 1 3 4
Fibonacci ratio 1 1 1 3
Marble math 1 1 1 3

The “plant names” response refers to a number of walks on which plants were identified by the instructor in the local language of the participant. The participants did not all know their own plant names and many found this interesting and surprising.

A field trip to the Pwunso botanic garden to view spice plants, timber trees, and learn about the benefits of local foods from the Island Food Community garnered the most votes for being fun.

A laboratory that used boiled flowers to generate floral litmus solutions the most interesting activity for the participants, followed by a laboratory that determined the speed of sound using sticks from the forest, orally counted seconds, and echoes.

Six of the seventeen respondents felt that all of the activities engaged in were useful to them as teachers and as future teachers. Seven felt that none of the activities could be classified as least useful to them.

Constructing circles, triangles, squares, pentagons, and hexagons with a string and straight edge generated the strongest even split of all activities.

Although not shown in the excerpt above because the number of responses was only two, a side unit on a sound wave done in the computer laboratory, a unit on logic (categorical propositions, the square of opposition, and categorical syllogisms), and a batteries and bulbs activity were the only activities to receive more than one negative response.

The participants were also asked what they would change if the workshop were to ever be run again. The following responses are in descending order of popularity.

Move the start time back one hour from 8:00 to 9:00 (4 respondents)
Ensure lunch is arranged (4 respondents)
Run the workshop at dates that do not fall so close to a major holiday (3)
Cover how to prepare a science worksheet for lower grades (1)
Have more field trips (1)
Shorten the workshop day to four hours (1)
Extend the workshop to three weeks (1)
Spend more time outside (1)

Teacher Corps II

Thursday morning, day four of the workshop, opened with a focus on captivating students’ attention. No attention, no learning. Rather than say this up front, however, the concept was made concrete by putting a teacher, supported by two other teachers, on a RipStik caster board.

With a teacher standing on the board, the difference between dynamic and static stability was explained. Having a teacher being held up on the unstable, stationary board, focused the attention of at least the teacher on the board, if not the class.

With the definition illustrated, the concept was extended to climate change. If the global climate is essentially statically stable, then small perturbations in that system should engender nothing more than small, fairly stable changes in the global climate. If the global climate system is only dynamically stable, then small changes may have unexpected effects including potentially large changes as described in runaway climate change scenarios.

Following this presentation, the instructor used the RipStik to introduce waves. The RipStik leaves behind a distinctive wave on the paper. The wave form provides an opportunity to introduce terminology such as crest, trough, wavelength, and amplitude. The RipStik also makes concrete frequency as being the number of “wiggles” per second.

Dana on a RipStik laying down a waveform
Dana on a RipStik laying down a waveform

Rapid wiggling generates a high frequency (big), short wavelength (small). Slow wiggling generates a low freqency (small),  long wavelength (big). Thus the caster board well demonstrates the inverse relationship between wavelength and frequency that is seen in many systems.

Best of all, for the caster board the wave speed (frequency times wavelength) is exactly the linear board speed.

Images of the tracks with labeled features were illustrated in an article written by the workshop lead in October 2011. The activity is used in conjunction with a unit on waves in physical science.

The board ridden on paper on concrete provides a way to bring wave phenomenon down into earlier grades below the high school level. The boards do cost money, and one has to either ride the board or have a rider, yet there are a fair number of young riders even here on Pohnpei and thus it might be an option for a teacher. Simply have the student ride their board across the paper.

Inside the classroom transverse waves on a length of chain and longitudinal waves in a Slinky spring were demonstrated.

Following the Thursday morning break, the 10:00 session started with geometric math standard 2.31 recognize common shapes. But in a twist on standard 2.8.1, all shapes were constructed using only a length of string as a compass and a meter stick from the forest. The meter sticks had been built on Monday. Constructions based on these limitations are well covered by Zef Damen.

Constructions started with a circle and moved on to equilateral triangles, hexagons, squares, and finally a pentagon. The proof of the Pythagorean theorem was also presented, along with proof of the irrationality of the square root of two. This last fact was problematic for the Pythagoreans and their math system that effectively postulated all one needs to do mathematics are “marbles and pompoms“, along with ratios of marbles and pompoms.

Rustem analyzes acids and bases, Trevor on the right
Rustem analyzes acids and bases, Trevor on the right

In the background above the pentagon/pentagram construction can be glimpsed, on the far right is part of the Pythagorean proof.

The square root of two is not, however, expressable in the Al Mat marbular system, much to the consternation of the Pythagoreans. Thousands of years later Cantor would show that the infinity of irrational numbers is a higher order infinity than that of integers.

By the end of the session the class had moved up from 2.3.1 recognize common shapes and 2.4.1 identify and classify shapes up past 2.8.1 construcitons, 2.8.4 Pythagorean theorem,  1.8.3 square roots, and on into a presentation on the proof of the irrationality of the square root of two.

After the lunch break the class spent a half an hour in the computer laboratory were a fourier sound applet was demonstrated. The applet showed the connection between wavelength and frequency for sound waves, along with a graphical representation of a sound wave.

Then the teacher moved downstairs to engage in a laboratory using floral litmus solutions to detect acids and bases. This was based directly on physical science laboratory thirteen.

Yasko with acid, base, and neutral detection
Yasko with acid, base, and neutral detection

The session served science standards Sci 1.hs.1 and the Sc hs benchmark chemistry bullet item number eighteen, the study of acids, bases and salts.

Benskin
Benskin with test tubes

The laboratory also demonstrated the use of minimal glassware and locally available materials including common household chemicals in a chemistry experiment.

Cheryl tests a floral litmus solution against a known base
Cheryl tests a floral litmus solution against a known base

In the final session of the day which began at 3:00 in the afternoon, the teachers returned to the computer laboratory where science outcomes 3.4.2, 3.5.2, El Niño, La Niña, tropical storm formation, and climatic patterns were presented using presentations put together by Chip Guard of the National Weather Service on Guam. The instructor owes a deep debt of thanks to Chip Guard and the NWS for sharing those presentations.

Friday morning began with a discovery learning session using batteries and bulbs. This particular exercise derives from physical science laboratory 12 and served FSM science learning outcome 2.8.7. A Pohnpei Utility Corporation bill was also worked.

Lorleen measures Deffeny
Lorleen measures Deffeny

Following this session, the class determined their FiboBelly ratio, an exercise selected from a series of exercises centered on numeric patterns including the Fibonacci sequence.

Yasko measures Benskin
Yasko measures Benskin

This exercise is often done in conjunction with Fibonacci factors and Pigonacci. Pigonacci includes the connection between the Fibonacci numbers and Pascal’s triangle.

FiboBelly ratios on the white board
FiboBelly ratios on the white board

The final white board with the teachers’ Fibobelly ratios.

After the morning sessions the teachers prepared workshop evaluations and assessment. Some of the teachers chose to work in the computer laboratory.

A204 Computer laboratory
A204 Computer laboratory

The workshop wrapped up on Friday the 23rd of December with a pizza luncheon and certificates of completion for all participants.

As an addendum to the Thursday afternoon presentation, the following is an account of the damage done by typhoon Lola in November 1957 held in the Pacific Digital Library.

Typhoon Lola Pays A Call

A most unladylike intruder by the name of Lola paid a call upon the Trust Territory in mid-November 1957.

Lola was a typhoon of major proportions. Sweeping along like a bulldozing
broom, she smashed down valuable breadfruit and coconut trees, submerged crops, wrecked homes and generally produced havoc as she rolled on from the Marshalls through Ponape, Truk, Guam, and up to
Rota.

The typhoon which caused more over-all damage than any previously recorded within the territory, brought no loss of life and no major bodily injuries as far as is known, although many times tragedy knocked hard and close. In the face of danger, numerous spontaneous acts of valor came to the fore.

Lola entered Ponape District on November 12, leaving havoc, destruction and debris as she whirled on her way. Not for fifty years had Ponape had a typhoon. It was generally considered to be out of the typhoon path. But reports from atolls and islands throughout the area repeated the story of coconut and breadfruit trees destroyed, and of food shortage imminent after the windfall of nuts on the ground would have been made into copra or consumed for food, and the breadfruit eaten.

Kolonia, the Ponape District center, was in the direct path of the storm, as were the islands immediately around it. Knowing that the typhoon was coming, the people of Kolonia took shelter in the hospital building and warehouse, District Administration office, Intermediate School, agriculture station, and in churches and other buildings of the religious missions. For
some 250 or more storm refugees in these shelters, C-rations (individual canned foods), rice and sugar were issued by the Administration, also small quantities of kerosene to provide fuel for the ranges on which people prepared hot food and beverages.

The damage to buildings and utilities at Kolonia was considerable. Destroyed were the temporary warehouses and carpenter shed on the site of the new Pacific Islands Central School, and ruined was all of the
bagged cement therein, a total loss representing some five thousand dollars.
Ponape’s power and telephone systems were heavily hit by falling trees; roads were eroded, and bridges and culverts damaged, with a loss of approximately thirty-three thousand dollars in government property alone.

In addition to buildings damaged and public works systems affected, four vessels went aground in the bay – all privately owned. These were the LUCKY, the CULVER, the MARU, and the ASCOY. All except the first were expected to be refloated. The LUCKY, which was directly hit and forced high onto the reef, was not thought to be salvable.

Cacao pod production in Ponape was reduced by at least fifty per cent by the typhoon, according to estimates, and copra production here also is diminishing as a result of the high winds which blew immature nuts to the ground, or weakened them so that they began falling off before
ripening.